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Abstract: - This paper presents a vibration reduction model of the radial vibration in a high precision spindle 
caused by unbalance force. The spindle-bearing system is considered as a flexible rotor supported by two sets 
of angular contact ball bearings. The finite element method (FEM) has been adopted for obtaining the spindle-
bearing system equation of motion. In this study, natural frequencies, critical frequencies and amplitude of the 
unbalance response caused by residual unbalance are determined in order to investigate the spindle-bearing 
system behavior. In this paper, we proposed a new combination stochastic algorithm model such as hybrid 
genetic algorithm (HGA) for minimizing radial vibration of the spindle-bearing system by raising the critical 
frequencies and reducing the amplitude of unbalance response, which considers shaft diameter, dynamic 
characteristic of the bearing, critical frequencies, and amplitude of the unbalance response, and computes 
optimum spindle diameter and the values of damping and stiffness of the bearing. In numerical simulation 
results show that by optimizing shaft diameter, and the values of damping and stiffness of the bearing, the 
spindle vibration amplitude at operating speed can be minimized. A spindle-bearing system about 4.25 µm 
radial vibration amplitude can be reduced with 2.33 µm accuracy. 
 
Key-Words: - Flexible rotor, high precision spindle, optimization model, radial vibration amplitude, spindle-
bearing system 
 
1 Introduction 
Many high precision spindles are widely used in 
most of high precision grinding machine tools. 
Therefore, the higher accuracy of machining process 
can be achieved by using these spindles [1]. 
Moreover, the benefits of using high precision 
bearing encouraged machine tool engineers to 
contribute for development in technology of this 
spindle-bearing system. The fundamental methods 
for designing machine tool spindle-bearing system 
can be seen in reference [2]. An important function 
when employing spindle equipped with angular 
contact ball bearing, arises from error correction 
capability.  

In this research, the vibration reduction model of 
radial vibration in spindle-bearing system was 
studied due to unbalance mass of the grinding 
wheel, which is influenced by the parameters such 
as the spindle shaft diameter, and coefficient value 
of damping and stiffness of the angular contact ball 
bearing. Few papers have reported that parameters 
of the system such as shaft diameter, shaft stiffness 
and the dynamic coefficients of the bearing, the 
radial vibration amplitude of the shaft can be 
minimized [3 - 5].  

As An illustration, for spindle-bearing system 
with an initial radial vibration amplitude of 20 µm. 
has the optimum radial vibration amplitude about 2 
µm [6] when mounted on the optimized bearing. A 
higher stiffness coefficient in the bearing can be 
raised by increasing the initial preload [7], enabling 
an optimum design to be achieved as in reference 
[8]. However, further investigations show that for an 
optimal performance not only stiffness parameter of 
the bearing must be increased, but the bearing 
damping also shall be adjusted [9]. Natural 
frequencies of spindle-bearing system can be 
maximized by the optimal locations of bearings 
installed on a spindle shaft [10, 11]. 

In this article, a spindle shaft is modeled as 
flexible rotor supported by two sets of high 
precision angular contact ball bearing. Finite 
element model (FEM) is employed to build the 
spindle-bearing system equation of motion in order 
to describe its dynamic behavior. In this study, 
natural frequencies, critical frequencies, and 
amplitude of the unbalance response caused by 
residual unbalance are determined in order to 
investigate the behavior of spindle-bearing system. 

An optimization design technique is developed in 
order to minimize radial vibration amplitude of the 
spindle and computes the optimum values of spindle 
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shaft diameter, and damping and stiffness of the 
bearings which considers shaft diameters, dynamic 
characteristic of the bearing, critical frequencies and 
amplitude of the unbalance response. The optimum 
values are obtained by raising critical frequencies 
and reducing maximum amplitude of the residual 
unbalance response. Due to complexity equation of 
the constraint and objective function, describing 
critical frequencies and unbalance response, an 
enhanced stochastic algorithm searching method 
such as hybrid genetic algorithm (HGA) [12] is 
employed for computing optimum shaft diameter, 
and damping-stiffness bearing coefficient values. 

In numerical simulation results show that by 
optimizing shaft diameter, and damping-stiffness 
coefficient, the radial vibration of the spindle can be 
achieved in certain operating speed. As the 
simulation example result, an initial design of 
spindle radial vibration has run-out about 4.25 µm 
can be minimized with 2.2 µm at operating speed 
(8000 rpm). 

This paper is organized into few sections as 
follow. In Section 2, the modeling of the problem 
including the derivation of motion equation model is 
explained. Furthermore, the general analyses for 
eigen-value and unbalance response are derived. 
The parameter variables for our design optimization, 
critical frequencies, unbalance responses, are 
determined, and a search strategy method for our 
optimization process is presented. Finally, 
numerical results for the spindle-bearing system 
which reducing the total spindle mass are shown in 
section 3.  
 
2 Methods 
 
2.1 Model of rotating spindle-bearing system   
Generally, the spindle-bearing system is considered 
as an assembling of discrete disks, bearings and the 
spindle segments with distributed mass. In order to 
obtain an analysis of the complicated spindle-
bearing system, the vibrations are calculated based 
on the procedure of the finite element discrete in 
many literatures [13 – 15], detail of those equations 
will not be derived here and only the general motion 
equations are shown below. The system equations 
that describe behavior of entire spindle-bearing 
system are formulated by taking into account the 
contributions from all elements in the model. The 
assembled equation of motion with Ne elements in 
the global coordinates is of the form [3]. 
 

G G GM q C q K q F
•• •

− + =     (1) 
 

where MG = (Mre + Mte) is the global mass matrix, 
Mre, Mte are the rotational and translational mass 
element matrices, CG = (-ΩG +Cb), KG = (Kb + Ks) 
are the global matrices of damping and stiffness, G 
is a gyroscopic matrix, Cb, Kb are the damping and 
stiffness element matrices of the bearing, and F is a 
force vector, respectively. 
 
2.1.1 Analysis of eigen-value  
In order to obtain the natural frequency of system, 
then eigen-value must be solved and expressed by 
Eq. (1), the equation of global system can be set as 
state variable vector. 
 

0G GA x B x
•

+ =      (2) 
 
where the matrices of AG, BG, and displacement x 
consist of element matrices given as: 
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For assuming harmonic solution 0

tx x eλ=  of Eq. 
(2), the solution of an eigen-value problem is 
 

0( ) 0G GA B xλ + =     (3) 
 
where, λ is the eigen-value. The eigen-values are 
usually complex number and conjugate roots. 
 

k k kiλ α ω= ±      (4) 
 
where, αk and ωk are the stability factor of growth 
and the k mode of damped frequencies, respectively. 
 
2.1.2 Analysis of the unbalance response  
The force of unbalance mass (F) which is shown in 
Eq. (1) can be expressed as: 
 

2 i t
uF F e Ω= Ω      (5) 

 
where Fu is force which independent of time and 
rotating speed. The steady-state response due to 
unbalance mass is considered to be as the form. 
 

i t
uA A e Ω=      (6) 

 
by substituting Eqs. (5) and (6) into (1), the equation 
can be expressed as  
 

2 2( )G G G u uK M i C A F−Ω + Ω = Ω   (7) 
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by solving Eq. (7) for Au, the steady-state response 
can be obtained. 
 
2.2 Optimization model   
In this article, we proposed a new optimization 
formulation model for the radial vibration reduction 
problem that can be called as vibration level 
optimization problem. Optimum values of the 
spindle, diameter and the damping-stiffness of the 
bearings could be obtained by raising the critical 
frequencies and reducing amplitude of the 
unbalance response. For the formulation model, in 
this study the objective function is to minimize the 
total spindle mass M (Q) and the inequality 
constraints are subject to the non-linear function of 
the critical frequencies and the amplitude of the 
unbalance responses. In this case, the spindle 
diameter, and the damping and stiffness of the 
bearings were selected as the design variables. As 
we have described above, the optimization 
formulation model can be expressed as follows: 
 
Minimize mass M (Q) 
Ωm (Q) ≥ Ωm

*, 
Am (Ωm) ≤ Am

*,  
QL ≤ Q ≤ QU.     (8) 
 
where, Ωm and Am (m = number of mode) are the 
new values of critical frequencies and unbalance 
responses for the optimum model, and Ωm

* and Am
* 

are the target constraint values of critical 
frequencies and unbalance response for the initial 
model. Therefore, it means that the critical 
frequencies, Ωm, should be increased above given 
initial values Ωm

*, and decreasing the unbalance 
response, Am, below the given values Am

*. 
Moreover, the upper QU and lower QL bounds on the 
design variables are set due to manufacturing 
constraint and to prevent critical stress. 

Table 1 Search strategy and parameters for global 
search (genetic algorithm) 

GA strategy Description of values 
Population size 40 
Scaling function Rank 

Selection function Stochastic uniform 
Elite count 2 
Crossover 
fraction 

Mutation 
probability 

85% 
Constraint dependent 

Constraint 
tolerance 

1×10-8 

Max number of 
generation 

150 

 
 
Fig. 1 Flowchart of hybrid genetic algorithm (HGA) 
 
Due to the non-linearity and complexity functions of 
critical frequencies and unbalance responses, the 
derivatives of these functions are difficult to obtain. 
Therefore, an enhanced stochastic search 
optimization approach without derivatives such as 
hybrid genetic algorithm (HGA) [4] was employed 
to solve the model of optimization, which performed 
in MATLAB programming language (M-file). There 
are two main processes in hybrid genetic algorithm 
(HGA), the global search (genetic algorithm) and 
the local search (minimum constraint algorithm) 
processes. A hybrid function is an optimization 
function that runs after the genetic algorithm 
terminates in order to improve the value of the 
fitness function. The hybrid function uses the final 
point from the genetic algorithm as its initial point. 
In this study, we used optimization function 
minimum constraint, such as a constrained 
minimization function. The first process is running 
the genetic algorithm to find a point close to the 
optimal point and then uses that point as the initial 
point for minimum constraint algorithm process. 
The flowchart process of hybrid genetic algorithm 
(HGA) for searching the optimum values of single-
objective function and design variables are 
described in Fig. 1. Table 1 shows the strategy of 
input parameter for performing process of genetic 
algorithm (GA). 
 
3 Problem Solution and Example 
Case Results 
In order to illustrate how the vibration level 
optimization design technique can be used to 
minimize the radial displacement of the spindle 
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system, a numerical simulation of example was 
done. A schematic of the finite element model of the 
spindle system is shown in Fig. 2. In this case, the 
spindle shaft is modeled into 17 beam elements with 
a node at both ends of the shaft element. The mass 
of grinding wheel and pulley system can be 
considered as four elements of the rigid disk which 
are located at node 1, 14, 15 and 16. In addition, the 
two sets of bearing are located at node 5 and 12, and 
the residual unbalance is assumed to occur at node 
1. 

In the case of vibration level optimization, the 
diameters of shaft element, dn, (n = element 
number), and the stiffness and damping coefficient 
of the bearing, Km, Cm, (m = 1, 2) are chosen as 
design variables. Thus, the design variables Q for 
the spindle-bearing system model should be written 
as follows: 

 

 
Fig. 2 Discretization (finite element) model of 
spindle system. 

 
Q = [d1, d2, . , d17, K1, K2, C1, C2]  (9) 

 
Due to the bearing dimension constraint, 

avoiding critical stress and the stability of 
optimization process is ensured then the upper and 
lower values on the diameters of shaft need to be 
set. The lower and upper bounds on the diameter of 
the shaft elements are given by QL = 0.017 m and 
QU = 0.106 m except in the vicinity of the bearings 
there is no change of the shaft diameter due to 
limitations of the bearing size. 

For solving the optimization problem, the first is 
to determine critical frequencies in the main concern 
of operating speeds range, and then proceed to 
calculate the magnitude of the unbalance response 
caused by these critical frequencies. These two 
things will give an overview about the vibration 
level of the spindle-bearing system behavior, and 
the responses with high amplitude chosen as a target 
value of the optimization process in which the 
amplitude needs to be reduced. 

Initial simulation results show that, the spindle 
system has two forward modes of the two-first 

critical frequencies, which are first forward mode 
Ω1F = 11910 rpm and second forward mode Ω2F = 
21120 rpm, respectively. Due to the first forward 
mode has a small modal damping ratio (ζ1F = 0.05), 
it may lead to a very high response peak as 
illustrated in Fig. 3. The initial values of critical 
frequency and maximum amplitude of vibration at 
the first forward mode (1F)(0) are 

 
Ω1F

(0) = 11910 rpm,    A1F
(0) = 5.032×10-5 m 

 
For the optimization procedure, by substituting the 
original model values into Eq. (8), re-arranged 
should be written as 
 
Minimize mass M (Q) 
Ωm (Q) ≥ Ωm

* = Ω1F
(0), 

Am (Ωm) ≤ Am
* = A1F

(0),  
0.017 ≤ Q ≤ 0.106.             (10) 
 

 
Fig. 3 Unbalance response of the spindle system. 

 
The numerical values are initial mass M = 14.4 

kg, operating speed Ω = 8000 rpm and initial values 
of the design variables are d1~d2 = 88 mm, d3~d6 = 
70 mm, d7~d9 = 64.5 mm, d10~d13 = 60 mm, d14~d15 
= 54.5, d16~d17 = 50.4. Furthermore, in this case 
characteristics of the spindle-bearings are 
considered as an isotropic bearing [17], which initial 
values are such as Kyy1 = Kzz1 = 1.911×108 N/m, 
Kyy2 = Kzz2 = 2.476×108 N/m, Cyy1 = Czz1 = 
191.1×102 N.s/m and Cyy2 = Czz2 = 247.6×102 N.s/m. 
The initial radial displacement in Eq. (7) is A = 4.25 
µm when the allowance residual unbalance (ISO 
1940 G1) [16] was applied to the grinding wheel. In 
Figs. 4 and 5 the time response of the displacement 
in the y and z axis direction and the absolute 
displacement of the spindle system respectively 
before optimization are shown. 
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The optimum values of the spindle diameter and 
the damping and stiffness of the bearings that 
minimize the radial displacement of the spindle 
system are tabulated in Tables 2 and 3. 

 

 
Fig. 4 Displacement amplitude of spindle-bearing 
system in the y and z axis (before optimization). 
 

 
Fig. 5 Absolute displacement amplitude of the 
spindle-bearing system (before optimization) 
 

Table 2. Shaft diameter of the spindle 
Diameter Initial 

values 
Optimum values 

d1 ~ d2 88 88 
d3 ~ d6 70 70 
d7 ~ d9 64.5 60 

d10 ~ d13 60 60 
d14 ~ d15 54.5 54.5 
d16 ~ d17 50.4 17 

 

 

 

Table 3. Dynamic characteristics of the bearing 
Bearing Initial values Optimum 

values 
Stiffness 

(N/m) 
  

Kyy1 = Kzz1 1.911×108 3.797×108 
Kyy2 = Kzz2 2.476×108 3.240×108 
Damping 
(N.s/m) 

  

Cyy1 = Czz1 191.1×102 192.8×102 
Cyy2 = Czz2 247.6×102 249.3×102 

 
A graphic comparison of the unbalance response 

at the node 1 due to the residual unbalance before 
and after optimization is shown in Fig. 6. It can be 
seen that the spindle diameter and the damping and 
stiffness of the bearings are the design variables 
which effective to increase the critical frequency 
and to decrease the amplitude of the unbalance 
response for the first mode (1F). The total shaft 
mass, the 1st critical frequency and the unbalance 
response for the initial and optimum model which 
was optimized by hybrid genetic algorithm (HGA) 
are presented in Table 4. 

 

 
Fig. 6 Comparison of unbalance respon amplitude 

Table 4. Optimum values computed by HGA 
 Initial 

values 
Optimum values 

Total mass of 
shaft (kg) 

14.40 13.44 

1st critical 
speed Ω1F 

(rpm) 

11910 14838 

Amplitude of 
unbalance 

response A1F 
(m) at first 

mode 

5.032×10-5 3.691×10-5 
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Numerical simulation result shows that, after 
optimizing the diameter of spindle shaft, and 
adjusting the bearings to an optimal stiffness and 
damping, which the allowance residual unbalance (1 
gr.mm/kg) according to ISO 1940-1 G1 was applied 
to the grinding wheel, therefore the maximum radial 
displacement of the spindle for operating speed Ω at 
8000 rpm would be A = 2.33 µm as illustrated in 
Fig. 6. In Figs. 7 and 8 the time response of the 
displacement in the y and z axis direction and the 
absolute displacement of the spindle system after 
optimization are shown respectively. In Fig. 8 the 
absolute displacement of the spindle system shows a 
great reducing, about 45.1% in the amplitude when 
compared with Fig. 5. This certainly can contribute 
to improve accuracy of the product of the 
machining. 

 

 
Fig. 7 Displacement amplitude of the spindle-
bearing system in the y and z axis (after 
optimization) 
 

 
Fig. 8 Absolute displacement amplitude of the 
spindle-bearing system (after optimization) 
 
 

4 Conclusion 
An optimization design technique such as 
vibration level optimization has been 
implemented successfully in order to minimize 
radial vibration amplitude of the spindle-
bearing system. In this study, vibration level 
optimization model was developed to find 
spindle diameter and damping-stiffness 
coefficient of the bearings optimum values by 
raising critical frequencies and reducing the 
amplitude of unbalance response. The objective 
function of this optimization problem is 
categorized as a single-objective problem which 
only to minimize the spindle mass under of the 
critical frequencies and the unbalance response 
constraints. Simulation results show that the 
radial vibration amplitude of the spindle for 
operating speed Ω at 8000 rpm is reduced 
satisfactory, about 45.1% when optimizing the 
diameter of spindle shaft, and adjusting the 
dynamic characteristics of the bearing to an 
optimum damping and stiffness coefficient. 
This certainly can improve the accuracy of the 
machining process. For future work, this vibration 
level optimization model need to be considered 
as a multi-objective problem, which including 
the spindle mass, critical frequencies, and 
unbalance responses as objective function. 
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